UDC: 656.072
https://doi.org/10.25198/2077-7175-2024-6-74

MODELING THE CAPACITY OF A SECTION OF THE ROAD NETWORK, TAKING INTO ACCOUNT THE FORMATION OF GROUPS OF VEHICLES

H. M. A. Asfur1, N. K. Goryaev2
South Ural State University (national research university), Chelyabinsk, Russia
1e-mail: iraqieng2003@gmail.com
2e-mail: goriaevnk@susu.ru

V. I. Rassokha
Orenburg State University, Orenburg, Russia
e-mail: cabin2012@yandex.ru

Abstract. The transport systems of modern cities largely determine the quality of life of the urban population. Increasing the role of urban public passenger transport, increasing the volume of traffic carried out by this type of transport, is traditionally considered as one of the ways to reduce the severity of urban transport problems. In this regard, a study aimed at improving the productivity of urban passenger transport, including by increasing the capacity of urban transport infrastructure, is relevant. Based on the relevance of the topic under consideration and approaches that ensure an increase in the productivity of passenger transport systems with a minimum amount of investment, the purpose of the study is formulated: improving the efficiency of public urban passenger transport through the implementation of measures to increase the capacity of the most critical sections of the road network. To develop measures that form the conditions for organizing the movement of passenger vehicles, a mathematical model of the capacity of a section of the street and road network has been developed, which allows to identify a combination of transport infrastructure parameters ensuring its maximum value. The developed model differs from the known analogues by taking into account the process of spontaneous formation of groups of passenger vehicles and the realization of the possibility of their synchronous interaction with the platforms of the stopping point. Based on the simulation results, the dependences of the capacity of a section of the street and road network with a dedicated lane for passenger vehicles on the parameters of traffic light regulation and the number of landing sites at the stop point were determined. The integrated application of the data obtained allows us to determine the balanced parameters of stopping points and traffic lights that ensure maximum throughput of the site under consideration. The developed mathematical model and the dependencies obtained with its help constitute the points of scientific novelty of the performed research. The developed theoretical provisions, the mathematical model formed on their basis and the obtained dependencies together can be considered as a tool for determining the optimal parameters of urban transport infrastructure, which is the practical significance of the results obtained. One of the promising directions for the development of the proposed approach is to expand the scope of its application by developing an add-on that ensures its implementation for the case of passenger vehicles moving in the general flow outside the allocated lane.

Key words: urban passenger transport, capacity, passenger transportation, transport infrastructure, road network, vehicles.

Cite as: Asfur, H. M. A., Goryaev, N. K., Rassokha, V. I. (2024) [Modeling the capacity of a section of the road network, taking into account the formation of groups of vehicles]. Intellekt. Innovacii. Investicii [Intellect. Innovations. Investments]. Vol. 6, pp. 74–88. – https://doi.org/10.25198/2077-7175-2024-6-74.


References

  1. Azemsha, S. A., Starovoitov, A. N., Skirkovsky, S. V. (2013) [Optimization of intervals of movement of vehicles in urban passenger transportation in regular service]. Optimizaciya intervalov dvizheniya transportnyh sredstv pri gorodskih perevozkah passazhirov v regulyarnom soobshchenii [Bulletin of the Belarusian State University of Transport: Science and Transport]. Vol. 2 (27), pp. 52–57. – EDN: LAKSAV. (In Russ.).
  2. Bogumil, V. N., Efimenko, D. B. (2021) [The use of digital infrastructure models in the urban passenger transport management system]. Ispolzovanie modelej cifrovoj infrastruktury v sisteme upravleniya gorodskim passazhirskim transportom 27 sentyabrya – 02 oktyabrya 2021 goda: Materialy XIV mul’tikonferentsii v 4 tomakh [XIV All-Russian multi-conference on management problems of the ICPU-2021. September 27 – October 02, 2021: Proceedings of the XIV multiconference in 4 volumes]. V. 4. Rostov-on-Don – Taganrog, pp. 23–26. – EDN: SSNDFF. (In Russ.).
  3. Bocharov, I. A., Vlasov, Y. L., Rassokha, V. I. (2011) [A model for determining the optimal number of route vehicles]. Model opredeleniya optimalnogo kolichestva marshrutnyh transportnyh sredstv [Bulletin of the Orenburg State University]. Vol. 10 (129), pp. 150–157. – EDN: PDRBUX. (In Russ.).
  4. Efimenko, D. B., Barabanova, E. S., Tkacheva, A. I. (2019). [The use of digital technologies in the development of transport support for foreign economic activity]. Primenenie cifrovy`x texnologij v razvitii transportnogo obespecheniya vneshneekonomicheskoj deyatelnosti. [Transport Bulletin]. Vol. 10, pp. 14. – EDN: TKNLJD. (In Russ.).
  5. Zedgenizov, A. V. (2007) [Estimation of the time of release of a stop point for urban passenger transport]. Ocenka vremeni osvobozhdeniya ostanovochnogo punkta gorodskogo passazhirskogo transporta [Bulletin of the Irkutsk State Technical University]. Vol. 4 (32), pp. 145–151. – EDN: JJPJSJ. (In Russ.).
  6. Zedgenizov, A. V. (2008) [Improving the efficiency of the functioning of urban passenger transport stops]. Povyshenie effektivnosti funkcionirovaniya ostanovochnyx punktov gorodskogo passazhirskogo transporta [Bulletin of the Irkutsk State Technical University]. Vol. 3 (35), pp. 123–125. – EDN: JSAEPD. (In Russ.).
  7. Iskhakov, M. M., Rassokha, V. I. (2007) [A comprehensive study of the stopping points of urban passenger transport in Orenburg]. Kompleksnoe issledovanie ostanovochny`x punktov gorodskogo passazhirskogo transporta g. Orenburga [Bulletin of the Orenburg State University]. Vol. 9 (73), pp. 207–214. – EDN: IJXAMR. (In Russ.).
  8. Iskhakov, M. M., Rassokha, V. I. (2008) [«The human factor» in the organization of the work of fixed-route vehicles at bus stops]. «Chelovecheskij factor» v organizacii raboty marshrutnyh transportnyh sredstv na ostanovochnyh punktah [Bulletin of the Orenburg State University]. Vol. 1, pp. 144–149. – EDN: IJJVGV. (In Russ.).
  9. Larin, O. N. (2007) Metodologiya organizacii i funkcionirovaniya transportnyh sistem regionov [Methodology of organization and functioning of regional transport systems]. SUSU Publishing House. Chelyabinsk, 207 p. – EDN: QSLFQN.
  10. Larin, O. N., Kazhaev, A. A. (2012) [Reduction of conflict situations at the stops of the route networks of cities]. Snizhenie konfliktny`x situacij na ostanovochny`x punktax marshrutny`x setej gorodov [Transport: science, technology, management. Scientific information collection]. Vol. 1, pp. 48–49.– EDN: OXEMQZ. (In Russ.).
  11. Lipenkov, A. V. (2015) [Investigation of the influence of a regulated intersection on the capacity of a stop point]. Issledovanie vliyaniya reguliruemogo peresecheniya na propusknuyu sposobnost` ostanovochnogo punkta [Bulletin of the Irkutsk State Technical University]. Vol. 9 (104), pp. 113–121. – EDN: UJWFKD. (In Russ.).
  12. Lipenkov, A. V., Kuzmin, N. A., Yerofeeva, L. N. (2015) [A mathematical model of the capacity of a stopping point in the absence of maneuvers to overtake each other by buses]. Matematicheskaya model` propusknoj sposobnosti ostanovochnogo punkta v sluchae otsutstviya manevrov po obgonu avtobusami drug druga [Bulletin of the Orenburg State University] Vol. 4 (179), pp. 87–94. – EDN: UHINJR. (In Russ.).
  13. Litvinov, A. V. (2020) [Estimation of the cost of travel time based on the models of the choice of the mode of movement] Ocenka stoimosti vremeni peredvizheniya na osnove modelej vybora sposoba peredvizheniya [Transport: science, technology, management. Scientific information collection]. Vol. 11, pp. 45–48. (In Russ.).
  14. Petrov, A. I. (2022) [Sociological aspects of the medium-term dynamics of the organization of the transportation process on Tyumen city bus routes] Sociologicheskie aspekty srednesrochnoj dinamiki organizovannosti perevozochnogo processa na gorodskix avtobusny`x marshrutax Tyumeni [Transport of the Urals]. Vol. 2 (73), pp. 9–16. (In Russ.).
  15. Bannov, A. S., et al. (2007) [Forecasting passenger flows in the urban transport system]. Prognozirovanie passazhiropotokov v gorodskoj transportnoj sisteme [Proceedings of the Volgograd State Technical University. Series: Ground transportation systems.]. Vol. 2, No. 8 (34), pp. 95–98. – EDN: KWEHXD. (In Russ.).
  16. Rassokha, V. I., Nadiryan, S. L. (2023) [Modeling of performance indicators of urban passenger transport in the maintenance of non-stationary passenger flows]. Modelirovanie pokazatelej e`ffektivnosti gorodskogo passazhirskogo transporta pri obsluzhivanii nestacionarny`x passazhiropotokov [The world of transport and technological machines]. Vol. 4–1 (83), pp. 81–90. (In Russ.).
  17. Rassokha, V. I, Dryuchin, D. A., Nadiryan, S. L. (2023) [Optimization of the structure of the fleet of trackless vehicles serving urban passenger routes based on the results of mathematical modeling]. Optimizaciya struktury` parka bezrel`sovy`x transportny`x sredstv, obsluzhivayushhix gorodskie passazhirskie marshruty`, na osnove rezul`tatov matematicheskogo modelirovaniya [International Journal of Advanced Studies.]. Vol. 13. No. 3, pp. 180–202. (In Russ.).
  18. Taubkin, G. V., Koptelov, O. G. (2015) [Changing the route travel time when creating travel pockets]. Izmenenie vremeni marshrutnogo dvizheniya pri sozdanii zaezdnyx karmanov [Transport of the Urals]. Vol. 1 (44), pp. 102–105. – EDN: RQFADR. (In Russ.).
  19. Yakunin, N. N., Yakunina, N. V., Spirin, A. V. (2013) [A model for organizing public transport services by road along regular transportation routes]. Model organizacii transportnogo obsluzhivaniya naseleniya avtomobilnym transportom po marshrutam regulyarnyx perevozok [Cargo and passenger transport]. Vol. 3, pp. 78–83. – EDN: PVEJRD. (In Russ.).
  20. Yakunin, N. N., Nesterenko, D. H. (2015) [Criteria for assessing the accessibility of passenger transportation on regular routes]. Kriterii ocenki dostupnosti perevozok passazhirov po regulyarny`m marshrutam [Bulletin of the Orenburg State University]. Vol. 4 (179), pp. 154–158. – EDN: UHINOR. (In Russ.).
  21. Yakunina, N. V., Studenikin, V. A. (2021) [Organization of passenger transportation by urban public transport on the basis of a gross contract]. Organizaciya perevozok passazhirov gorodskim obshhestvenny`m transportom na osnove brutto-kontrakta [Progressive technologies in transport systems: proceedings of the XVI International Scientific and Practical Conference, November 11–13]. Orenburg: Orenburg State University, pp. 606–611. – EDN: VMMQYJ. (In Russ.).
  22. Bobinger, R. (1991) Context and framework of Drive transportation evaluation. In Proc. Drive Conference. Elsevier Amsterdam. pp. 389–412. (In Eng.).
  23. Fernandez, R. (1999) Design of bus stop priorities. Traffic Engineering and Control, Vol.40, No. 6, pp. 335–340. (In Eng.).
  24. Fernandez, R., Tyler, N. (2005) Effect of passenger–bus–traffic interactions on bus stop operations. Transportation Planning and Technology. – Vol. 28. – No. 4. – Pp. 273–292. – https://doi.org/10.1080/03081060500247747. (In Eng.).
  25. Highway Capacity Manual 2000. Transportation Research Board, National Research Council. Washington, D.C., USA, 1134 p. (In Eng.).
  26. Robbins, G. (1988) Increasing Bus Speed through Improved Stop Spacing. San Francisco Municipal Railway. San Francisco, CA. (In Eng.).
  27. Tyler, N. A. (1991) The contribution of expert opinion to the design of high-capacity bus priority systems. Computers & Structures, Vol. 40, No. 1, pp. 191–199. – https://doi.org/10.1016/0045-7949(91)90472-x. (In Eng.).