UDC: 656.1


M. G. Boyarshinov1, 2, 3, A. S. Vavilin1, 4
1Perm National Research Polytechnic University, Perm, Russia
2Perm military Institute of National Guard Troops of the Russian Federation, Perm, Russia
3e-mail: mgboyarshinov@pstu.ru
4e-mail: vavilin@tbdd.ru

Abstract. The average speed and density of road transport are used as indicators of the congestion situation, but do not allow tracking the evolution (stages of formatting, progressing, and vanishing) of traffic congestion. The authors proposed and justified a quantitative indicator of traffic congestion, which allows in an automated mode to identify the congestion situation on the urban road network using hardware and software video recording systems. The purpose of this study is due to the need to study the quantitative characteristics of the proposed indicator at characteristic intersections of urban roads, which will allow us to develop scientifically based recommendations for predicting congestion situations, substantiating, and making optimal decisions on measures to promptly eliminate traffic congestion. The object of study is the traffic flow at three types of intersections of the Perm city road network, equipped with a photo and video recording software and hardware complex. The subject of the study is the regularities of the evolution of the listed deterministic indicators of traffic flows, which can be used for operational forecasting of the formation, development, and elimination of traffic congestion. The theoretical and methodological approach is based on the methods of mathematical statistics used to process the results of observations of traffic flows at different types of intersections using a «sliding window», calculating the average daily value and standard deviation. The initial data were obtained with the help of hardware and software complexes for fixing violations of traffic rules installed on the street and road network of the Perm city. As a result of the study, the rational parameters of the «sliding window» were determined, ensuring the structuring of the traffic congestion indicator; the facts of the congestion situations formation were revealed; the features of the congestion evolution and the presence of problematic traffic directions for which it is advisable to change the traffic light regulation mode were determined. The theoretical and practical significance of the work consists in checking the operability of the proposed indicator and criterion of traffic congestion, which is of practical interest from the point of view of predicting anomalies in the movement of vehicles on the road network, adjusting the operating modes of traffic lights, etc. It is also possible to use the proposed traffic congestion indicator to assess the effectiveness of traffic light regulation on the Perm city road network. The direction of further research is to study the patterns of traffic congestion at intersections of the urban road network, of various types that are not included in this study.

Key words: traffic flow, traffic congestion, indicator and criterion of traffic congestion.

Cite as: Boyarshinov, M. G., Vavilin, A. S. (2024) [Patterns of traffic congestion indicator at some intersections of the road network]. Intellekt. Innovacii. Investicii [Intellect. Innovations. Investments]. Vol. 1, pp. 95–115. – https://doi.org/10.25198/2077-7175-2024-1-95.


  1. Mokshin, V. V. et al. (2019) [Analysis of the dynamic model «Optimization of traffic on a road section» in the environment of STATISTICA and ANYLOGIC]. Vestnik Tekhnologicheskogo universiteta [Bulletin of the Technological University]. Vol. 22, No. 5, pp. 119–127. (In Russ.).
  2. Anan’eva, E. Yu. (2021) [Information transport services: a tool for overcoming congestion]. Mir dorog [The world of roads]. Vol. 139, pp. 102–104. – EDN: RUASEA. (In Russ.).
  3. Andronov, R. V., El’kin, B. P., Genze, D. A. (2015) [The concept of a gate and the formation of queues at a controlled intersection in conditions of dense traffic flow]. Nauchno-tekhnicheskij vestnik Povolzh’ya [Scientific and Technical Bulletin of the Volga region]. Vol. 1, pp. 39–41. (In Russ.).
  4. Baskov, V. N., Ignatov, A. V. (2015) [Dependence of the risk of traffic congestion on the parameters of the traffic flow]. Nauchno-metodicheskij elektronnyj zhurnal Koncept [Scientific and methodological electronic journal Concept]. Vol. 35, pp. 1–5. – EDN: VCHAFT. (In Russ.).
  5. Baskov, V. N., Krasnikova, D. A., Isaeva, E. I. (2019) [The influence of the driver’s behavioral factor on the formation of traffic congestion]. Mir transporta [The world of transport]. Vol. 17, No. 4(83), pp. 272–281. – EDN: TMHTMZ. (In Russ.).
  6. Boyarshinov, M. G. (2020) [The normalized span method for analyzing the intensity of traffic flow]. Vestnik GBU «Nauchnyj centr bezopasnosti zhiznedeyatel’nosti» [Bulletin of GBU «Scientific Center for Life Safety»]. No. 2(46), pp. 35–46. – EDN: ZOUVIH. (In Russ.).
  7. Boyarshinov, M. G., Vavilin, A. S. (2023) [Characteristics of traffic congestion based on data from the photo and video recording system]. Intellekt. Innovacii. Investicii [Intellect. Innovation. Investment]. Vol. 3, pp. 83–106. – https://doi.org/10.25198/2077-7175-2023-3-83. (In Russ.).
  8. Boyarshinov, M. G., Vavilin, A. S., Vas’kina, E. V. (2022) [Application of wavelet analysis to study the intensity of traffic flow]. Intellekt. Innovacii. Investicii [Intellect. Innovation. Investment]. Vol. 4, pp. 72–87. – https://doi.org/10.25198/2077-7175-2022-4-88. – EDN: BBHFDH. (In Russ.).
  9. Boyarshinov, M. G., Vavilin, A. S., Vas’kina, E. V. (2022) [Application of the Hurst index to study the intensity of traffic flow]. Intellekt. Innovacii. Investicii [Intellect. Innovation. Investment]. Vol. 2, pp. 68–81. – https://doi.org/10.25198/2077-7175-2022-2-68. – EDN: RXHDQO. (In Russ.).
  10. Boyarshinov, M. G., Vavilin, A. S., Shumkov, A. G. (2021) [The use of a complex of photovideofixation of traffic violations to isolate deterministic and stochastic components of traffic flow intensity]. Intellekt. Innovacii. Investicii [Intellect. Innovation. Investment]. Vol. 3, pp. 61–71. – https://doi.org/10.25198/2077-7175-2021-3-61 (In Russ.).
  11. Boyarshinov, M. G., Vavilin, A. S., Shumkov, A. G. (2021) [Fourier analysis of traffic flow intensity]. Intellekt. Innovacii. Investicii [Intellect. Innovation. Investment]. Vol. 4, pp. 46–59. – https://doi.org/10.25198/2077-7175-2021-4-46 (In Russ.).
  12. Vetrogon, A. A., Kripak, M. N. (2018) [Transport modeling as a tool for effective solution of problems in the field of traffic flow management]. Sovremennye tekhnologii. Sistemnyj analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. Vol. 3(59), pp. 82–91. – https://doi.org/10.26731/1813-9108.2018.1(57).82-91. – EDN: YSFXUL. (In Russ.).
  13. Vladimirov, S. N. (2014) [Traffic congestion in a megalopolis]. Izvestiya Moskovskogo gosudarstvennogo mashinostroitel’nogo universiteta (MAMI) [Bulletin of the Moscow State Machine-Building University (MAMI)]. Vol. 3(19), pp. 77–84. – EDN: STXZCR. (In Russ.).
  14. Vlasov, A. A., Gorelov, A. M. (2014) [Management of traffic light objects in conditions of traffic congestion]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI) [Bulletin of the Moscow Automobile and Road State Technical University (MADI)]. Vol. 3(38), pp. 112–117. – EDN: SLPFIR. (In Russ.).
  15. Drew, D. R. (1968) Teoriya transportnykh potokov i upravleniye imi [Traffic flow theory and control]. New York: MacGraw-Hill Book Company, 467 p.
  16. European Conference of Ministers of Transport. Managing congestion in cities T. Worsley, L. Martin, B. Moore et al.; St. Petersburg: Association of Transport Engineers, 336 p. (In Russ., transl. from Engl.).
  17. Karablin, O. V. (2018) [On the fractal nature of the city’s automobile traffic]. Ekonomika: vchera, segodnya, zavtra [Economics: yesterday, today, tomorrow]. Vol. 8, No. 9A, pp. 287–292. – EDN: YSZQDJ. (In Russ.).
  18. Kashtalinskij, A. S., Petrov, V. V. (2016) [The influence of road transport factors on the unevenness of traffic flows in cities]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Irkutsk State Technical University]. Vol. 1(108), pp. 116–123. – EDN: VHISPF. (In Russ.).
  19. Kornev, A. V., Shaburov, S. S. (2021) [Traffic congestion. Options for solving the problem]. Molodezhnyj vestnik IrGTU [Youth Bulletin of IrSTU]. Vol. 11, No. 1, pp. 58–63. – EDN: PJVUKF. (In Russ.).
  20. Kostarev, A. F., Postanogov, I. C. (2016) [Using bigdata technologies for analyzing traffic flows based on photofixation flow data]. Vestnik Nauchnogo centra bezopasnosti zhiznedeyatel’nosti [Bulletin of the Scientific Center for Life Safety]. No. 2(28), pp. 30–35. – EDN: WHFIZH. (In Russ.).
  21. Laskin, M. B., Talavirya, A. Yu. (2021) [Estimation of traffic flow density based on simulation modeling of toll collection point]. Materialy 10 Vserossijskoj nauchno-prakticheskoj konferencii po imitacionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti «Imitacionnoe modelirovanie. Teoriya i praktika» (IMMOD-2021). 20–22 oktyabrya 2021 g., Sankt-Peterburg [Materials of the 10th All-Russian Scientific and practical Conference on simulation modeling and its application in science and industry «Simulation modeling. Theory and practice» (IMMOD-2021). October 20–22, St. Petersburg]. pp. 272–278. – EDN: ZOKRTI. (In Russ.).
  22. Makareckij, E. A, Nguen, Liem Hieu (2006) [Investigation of Fourier and wavelet spectra of images of vehicles]. Fundamental’nye issledovaniya [Fundamental Research]. Vol. 12, pp. 80–81. – EDN: ISDION. (In Russ.).
  23. Evteeva, A. S. et al. (2018) [Examination of the urban transport network using a measuring complex]. Transportnoe delo Rossii [Transport business of Russia]. Vol. 1, pp. 132–134. (In Russ.).
  24. Shepelev, V. D. et al. (2020) [Road traffic planning in the context of the «sustainable urban transport» system]. Vestnik Yuzhno-Ural’skogo Gosudarstvennogo Universiteta. Ekonomika i Menedzhment [Bulletin of the South Ural State University. Economics and Management]. Vol. 14, No. 2, pp. 177–186. (In Russ.).
  25. Makarichev, A. V. et al. (2019) [Distribution of the speed of cars in front of the stop line of the urban regulated intersection]. Vicnik Harkivs’kogo nacional’nogo avtomobil’no-dorozhn’ogo universitetu [The bulletin of the Kharkiv National Automobile and Road University]. Iss. 85, pp. 107–116. – https://doi.org/10.30977/BUL.2219-5548.2019.85.0.107 (In Russ.).
  26. Sil’yanov, V. V., Eliseeva, S. A., Utkin, A. V. (2010) [Modeling of chain critical situations in dense traffic flow]. Vestnik NCBZhD [Bulletin of the National Railways]. Vol. 5, pp. 65–70. (In Russ.).
  27. Shamlickij, Ya. I., Ohota, A. S., Mironenko, S. N. (2018) [Comparison of adaptive and rigid traffic control algorithms based on a simulation model in the ANYLOGIC environment]. Programmnye produkty i sistemy [Software products and systems]. No. 2, pp. 403–408. (In Russ.).
  28. Shchegoleva, N. V., Gusev, V. A., Vorozhejkin, M. A. (2016) [Formation of congestion in the traffic flow]. Tekhnicheskoe regulirovanie v transportnom stroitel’stve [Technical regulation in transport construction]. No. 5(19), pp. 25–28. (In Russ.).
  29. Aftabuzzaman, Md. (2007) Measuring Traffic Congestion – A Critical Review. Proceedings of the 30th Australasian Transport Research Forum, China, February 2007. 16 p. Available at: https://australasiantransportresearchforum.org.au/wp-content/uploads/2022/03/2007_Aftabuzzaman.pdf (accessed 10.11.2022). (In Engl.).
  30. Black, W. R. (2003) Transportation: A geographical analysis. New York: The Guilford Press, 408 p. (In Engl.).
  31. Boyarshinov, M. G., Vavilin, A. S. (2021) The deterministic component of the traffic flow intensity. OP Conference Series: Materials Science and Engineering, International Conference: Actual Issues of Mechanical Engineering (AIME 2020) 27th-29th October 2020, Saint-Petersburg, Russian Federation. 1111, 012013(10 p). – https://doi.org/10.1088/1757-899X/1111/1/012013 (In Engl.).
  32. Karimi, H. R., Pawlus, W., Robbersmyr, K. G. (2012) Signal Reconstruction, Modeling and Simulation of a Vehicle Full-Scale Crash Test Based on Morlet Wavelets. Neurocomputing. Vol. 93, pp. 88–99. – https://doi.org/10.1016/j.neucom.2012.04.010 (In Engl.).
  33. Kazhaev, A. et al. (2018) Modelling urban route transport network parameters with traffic, demand and infrastructural limitations being considered. IOP Conference Series: Earth and Environmental Science, 177, 012018. – https://doi.org/10.1088/1755-1315/177/1/012018 (In Engl.).
  34. Kumar, P., Kumar, V. S., Priya, L. (2023) Smart and Safety Traffic System for the Vehicles on the Road. IoT with Smart Systems. Smart Innovation, Systems and Technologies. Springer, Singapore. Vol. 312. – https://doi.org/10.1007/978-981-19-3575-6_51 (In Engl.).
  35. Li, L. et al. (2012) A Mixed-Fractal Traffic Flow Model Whose Hurst Exponent Appears Crossover. Fifth International Joint Conference on Computational Sciences and Optimization, 23–26 June 2012. Harbin, China. – https://doi.org/10.1109/CSO.2012.103 (In Engl.).
  36. Sathiyaraj, R., Bharathi, A. (2020) An efficient intelligent traffic light control and deviation system for traffic congestion avoidance using multiagent system. Transport. Vol. 35, No. 3, pp. 327–335. – https://doi.org/10.3846/transport.2019.11115 (In Engl.).
  37. Shepelev, V. et al. (2020) A study of the travel time of intersections by vehicles using computer vision. Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems. iMLTrans. Vol. 1, pp. 653–658. – https://doi.org/10.5220/0009806206530658 (In Engl.).
  38. Shepelev, V. et al. (2020) The use of multi-sensor video surveillance system to assess the capacity of the road network. Transport and Telecommunication. Vol. 21(1), pp. 15–31. – https://doi.org/10.2478/ttj-2020-0002 (In Engl.).
  39. Xomidov, A., Tursunboyev, M. (2022) Eliminating congestion on internal roads. Universum: technical sciences: electron. scientific. journal. Vol. 2(95). Available at: https://7universum.com/ru/tech/archive/item/13079 (accessed 20.11.2022). (In Engl.).
  40. Yasir, R. M., Nower, N., Shoyaib, M. (2020) Traffic Congestion Prediction Using Machine Learning Techniques. arXiv:2206.10983 [cs.LG]. – https://doi.org/10.48550/arXiv.2206.10983 (In Engl.).