УДК 629.1.04

DOI 10.25198/2077-7175-2018-9-87

Андрей Владимирович Пузаков, кандидат технических наук, доцент кафедры технической эксплуатации и ремонта автомобилей, ФГБОУ ВО «Оренбургский государственный университет» e-mail: And-rew78@yandex.ru

СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ ОЦЕНКИ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ АВТОМОБИЛЬНОГО ГЕНЕРАТОРА

Актуальность исследуемой проблемы обусловлена недостаточной информативностью и значительной трудоёмкостью существующих методов диагностирования автомобильных генераторов. Цель статьи заключается в обосновании предлагаемого метода диагностирования генераторов по параметрам внешнего магнитного поля. Ведущим методом к исследованию данной проблемы является оценка параметров внешнего магнитного поля, позволяющая распознать электрические неисправности автомобильного генератора разной стадии развития. Установлено, что осциллограмма внешнего магнитного поля представляет собой периодический сигнал, форма и амплитуда которого чувствительны к техническому состоянию генератора. Выбрана оптимальная точка на поверхности генератора, проведение измерений в которой обеспечивает однозначность диагностического параметра. Материалы статьи могут быть использованы для дальнейшей разработки и внедрения предлагаемого метода диагностирования автомобильных генераторов.

Ключевые слова: автомобильный генератор, внешнее магнитное поле, магнитуда магнитного поля, неисправности генератора.

Техническое состояние автомобильных генераторов характеризуется совокупностью значений структурных и диагностических параметров. Неисправность генератора обусловлена выходом хотя бы одного из параметров за допустимые пределы обеспечивающее его нормальное функционирование.

К диагностическим параметрам электрических машин можно отнести: температуру его элементов

[6, 1]; крутящий момент (для двигателей); уровень шума; вибрацию [10]; напряжение [11, 7]; силу тока [4]; внешнее магнитное поле.

Для определения технического состояния стационарных электродвигателей и генераторов были разработаны методы диагностики, основанные на анализе параметров внешнего магнитного поля [5, 8, 9, 3]. Наименование работ и авторы ранее проведенных исследований представлены в таблице 1

Таблица 1. Исследования магнитного поля электрических машин

Автор исследования	Наименование работы	Место, год
Тонких В.Г.	Метод диагностики асинхронных электродвигателей в сельском хозяйстве на основе анализа параметров их внешнего магнитного поля	Барнаул, 2009
Назарычев А.Н., Скоробогатов А.А., Новоселов Е.М.	Экспериментальное исследование внешнего магнитного поля асинхронного электродвигателя для контроля обрыва стержней короткозамкнутой обмотки ротора	Иваново, 2012
Вавилов В.Е., Пашали Д.Ю., Саяхов И.Ф.	Исследование внешнего магнитного поля асинхронных электродвигателей	Уфа, 2015
Barz Cristian, Oprea Constantin, Olivia Chiver	The advantages of numerical analysis for claw pole alternator	Romania, 2015
Mohamed Gabsy, Michel Lecrivane, Moufida Cluch	Embaded Simple Exicited automative Alternator modeling using magnetic equivalent circuid	Tunisia, 2017

К достоинствам подобных методов можно отнести высокую оперативность и информативность, а недостатком является необходимость оснащения электродвигателей датчиками магнитного поля.

Существует четыре типа датчиков, позволя-

ющих оценить параметры внешнего магнитного поля: детекторы Виганда, использующие изменение магнитной поляризации ферромагнитной проволоки; магниторезистивные детекторы, в которых используется изменение омического сопро-

тивления под действием магнитного излучения; индукционные датчики, работа которых основана на возникновении ЭДС в ферромагнитном сердечнике и датчики Холла; основанные на возникновении напряжения в полупроводнике под действием магнитного поля.

Для оценки внешнего магнитного поля автомобильного генератора был выбран датчик Холла, как обеспечивающий достаточную точность, подключаемый непосредственно к осциллографу с целью фиксации амплитудных и временных параметров. Эксперимент проводился на специализированном стенде [2], позволяющем изменять частоту вращения и нагрузку на генератор (рисунок 1).

В ходе эксперимента была выявлена зависимость величины внешнего магнитного поля от расстояния между датчиком и генератором. Уста-

новлено что при увеличении расстояния величина внешнего магнитного поля резко уменьшается и на расстоянии 50 мм сводится к нулю (рисунок 2). Экспериментальная зависимость аппроксимирована экспоненциальным уравнением.

Основными источниками переменного магнитного поля автомобильных генераторов являются обтекаемые током обмотки статора и ротора в пределах магнитопровода обмотки создают магнитный поток, который можно считать не зависящим от тока нагрузки [4].

Для практического использования метода диагностирования автомобильных генераторов по параметрам внешнего магнитного поля необходимо установить их зависимость от силы тока обмотки возбуждения (ротора) и частоты вращения ротора исправного генератора.

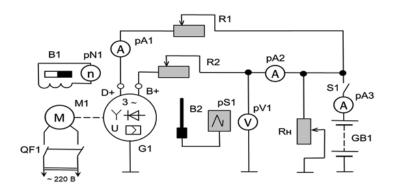


Рисунок 1. Схема проведения эксперимента (*Примечание*: B1 – датчик частоты вращения; B2 – датчик Холла; G1 – испытываемый генератор; GB1 – аккумуляторная батарея; M1 – электродвигатель; QF1 – автоматический выключатель; pN1 – тахометр; pS1 – осциллограф; pA1-pA3 – амперметры; pV1 – вольтметр; R1, R2 – лабораторные реостаты; S1 – выключатель AKE)

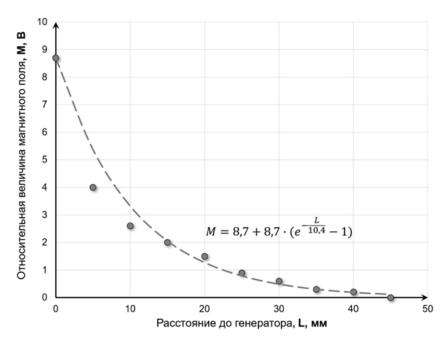


Рисунок 2. Зависимость относительной величины внешнего магнитного поля от расстояния между датчиком и генератором

Зная регрессионную модель изменения относительной величины магнитного поля (магнитуды) от вышеперечисленных факторов исправного генератора можно оценить состояние электрических элементов с помощью датчика Холла.

Представление полученных зависимостей в виде трехмерной поверхности отклика с дальнейшей обработкой в программе TableCurve3D приведено на рисунке 3.

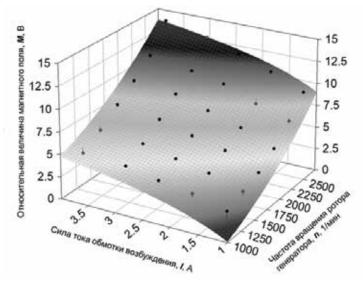


Рисунок 3. Зависимость относительной величины магнитного поля от частоты вращения ротора генератора и силы тока обмотки возбуждения

Двухфакторную аддитивную регрессионную модель зависимости относительной величины магнитного поля от частоты вращения ротора генератора и силы тока обмотки возбуждения можно представить

$$M = -1,278 + 1,36 \cdot 10^{-6} \cdot n^2 + 3,396 \cdot \ln I \quad (1),$$

где M — относительная величина магнитного поля (магнитуда), B;

n — частота вращения ротора генератора, 1/мин; I — сила тока обмотки возбуждения, A.

По выражению (1) можно определить относи-

тельную величину магнитного поля (магнитуду) исправного генератора при любых значениях частоты вращения ротора генератора и силы тока обмотки возбуждения

Форма внешнего магнитного поле исправного генератора, несмотря на искажение, в общем виде напоминает симметричную синусоиду. Однако форма и амплитуда внешнего магнитного поля зависит от выбора точки измерения на поверхности генератора. Для выбора оптимальной точки были произведены измерения внешнего магнитного поля в семи точках на поверхности генератора (рисунки 4 и 5).

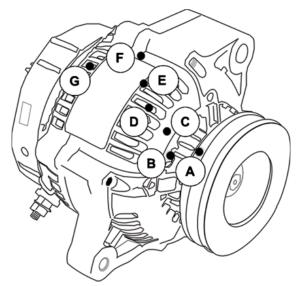


Рисунок 4. Точки измерения внешнего магнитного поля

Полученные результаты показали, что в разных точках величина внешнего магнитного поля может как увеличиваться, так и уменьшаться относительно исправного генератора (рисунок 6), причем

в одной и той же точке, например в точке В, уменьшение и увеличение магнитного поля может соответствовать разным неисправностям, что говорит о неоднозначности данного параметра.

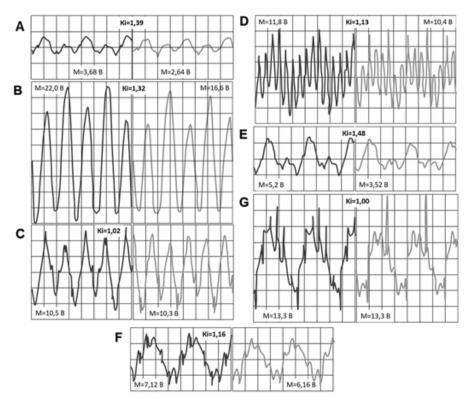


Рисунок 5. Форма и амплитуда осциллограмм внешнего магнитного поля

Поэтому окончательно для измерения магнитного поля была выбрана точка Е, для которой магнитуда магнитного поля исправного генератора составила 8,4В. и меньшие значения для характерных неисправностей.

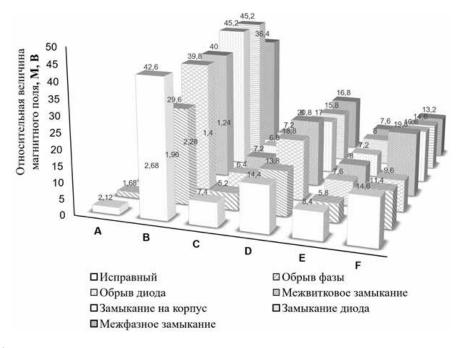


Рисунок 6. Результаты измерения магнитуды внешнего магнитного поля

Выводы

- 1. Методы оценки технического состояния электрических машин на основе параметров внешнего магнитного поля обладают высокой информативностью и низкой трудоемкостью, однако практическое применение нашли лишь для стационарных электродвигателей большой мощности.
- 2. С помощью датчика Холла зарегистрированы осциллограммы внешнего магнитного поля автомобильного генератора при различном техническом состоянии: исправном и с характерными электрическими неисправностями. Установлено,
- что форма и относительная величина (магнитуда) магнитного поля зависят как от технического состояния генератора, так и от точки проведения измерения.
- 3. Определена оптимальная точка на поверхности генератора, проведение измерений в которой обеспечивает однозначность диагностического параметра. Таким образом, дальнейшее развитие данного метода диагностирования позволит разработать практические рекомендации по его использованию для оценки технического состояния автомобильных генераторов.

Литература

- 1. Дорохина, Е.С. Мониторинг теплового состояния асинхронных тяговых электродвигателей: дис. ... канд. техн. наук / Е.С. Дорохина. Томск, 2015. 155 с.
- 2. Пузаков, А.В. Аппаратно-программный комплекс для оценки технического состояния автомобильных генераторов / А.В. Пузаков, Н.Н. Ларионов // Сборник материалов Международной научной конференции «Наука и образование: фундаментальные основы, технологии, инновации», посвящённой 60-летию Оренбургского государственного университета. Оренбург: ООО ИПК «Университет», 2015. С. 115-119.
- 3. Пузаков, А.В. Бесконтактный метод диагностирования автомобильных генераторов / А.В. Пузаков, Д.А. Рыбчук // Проблемы исследования систем и средств автомобильного транспорта. Вып. 2. Тула: Издво ТулГУ, 2017. С. 50-53.
- 4. Соколов, Л.А. Совершенствование изделий автотракторного электрооборудования по результатам диагностирования дефектов в процессе производства и эксплуатации: дис. ... канд. техн. наук / Л.А. Соколов. Москва, 2010.-108 с.
- 5. Тонких, В.Г. Метод диагностики асинхронных электродвигателей в сельском хозяйстве на основе анализа параметров их внешнего магнитного поля: дис. ... канд. техн. наук / В.Г. Тонких. Барнаул, 2009. 166 с.
- 6. Хомутов, О.И. Параметры теплового режима асинхронного электродвигателя для прогнозирования остаточного ресурса работы /О.И. Хомутов, С.О. Хомутов, В.И. Сташко, А.А. Грибанов // Ползуновский вестник. 2004. № 1. С. 279-284.
- 7. Bayba, A.J. Techniques for the Health Assessment of Automotive Alternators / A.J. Bayba, B.T. Siegel, K. Tom. Adelphi, 2012. 46 p.
- 8. Ceban, A. Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis / A. Ceban, R. Pusca, R. Romary // IEEE Transactions on industrial electronics. 2012. Vol. 5 (59). pp. 2082-2093.
- 9. Kuznetsov, V.A. Numerical modelling of electromagnetic process in electromechanical systems / V.A. Kuznetsov, P. Brochet // The international journal for computation and mathematics in electrical and electronic engineering. 2003. Vol. 4 (22). pp. 1142-1154.
- 10. Jae-Won, Ch. Analysis of electrical signatures in synchronous generators characterized by bearing faults / Ch. Jae-Won. Seoul, 2006. 82 p.
- 11. Pillai, K.P.P. Spectral Study on The Voltage Waveform of Claw Pole Automotive Alternator / K.P.P. Pillai, M.K. Idiculla, A.S. Nair // European Council for Modeling and Simulation. 2006. pp. 456-461.